
THE INFLUENCE OF NUMERICAL AND OBSERVATIONAL ERRORS ON
THE LIKELIHOOD OF AN ARMA SERIES

By S. Rao Jammalamadaka, Chengou Wu and Weiqung Wang

University of California, Santa Barbara, and Nanjing Institute of Meteorology,
China

First version received March 1992
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1. INTRODUCTION

When p and q are given, the maximum likelihood (ML) method provides a
precise way for estimating the parameters of an autoregressive moving-average
(ARMA) series. In the general case, there are three important methods for
calculating the likelihood function: the Box±Jenkins method, Ali's method and
the innovations algorithm. Box and Jenkins (1970, Ch. 7) developed an iterative
method to calculate the approximate likelihood. Galbraith and Galbraith (1974)
and Ali (1977) use Woodbury's formula while Chen and Gu (1983) use a
partition matrix technique to calculate the inverse of the correlation matrix. All
of these provide fast recurrence methods. Harvey and Phillips (1979), Rissanen
and Barbosa (1969), Kailath (1968, 1970), Ansley (1979) and others developed
the innovations algorithm, while Pan (1981) uses a matrix method, getting the
same recurrence procedure. In this paper, we focus on Ali's method.

These are basically three kinds of errors that in¯uence the accuracy of
calculation in a statistical procedure: the measurement error, the method error,
and the round-off error. We discuss here how these different errors in¯uence
the computation of the likelihood in a time series context. In general, most
statisticians do not pay much attention to the round-off errors and that can be
castastrophic as Faye and Vignes (1985) pointed out. Sometimes the entire
calculation can be meaningless because of round-off errors, as we show in our
Example 1. Koreisha and Pukkila (1990) also point out some problems arising
out of round-off errors in ML estimation. Moreover, the observations data are
not always measured exactly, often being in error by 1%±10% of the exact
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value, as for example when we measure temperature. In this paper, we ®nd that
the in¯uence of these errors on the computations cannot be ignored. We
develop `error analysis' formulae based on Wilkinson's (1963) work, to
describe how these errors propagate through the large number of computational
steps that are involved.

Notations and assumptions about round-off error as well as some basic
formulae are introduced in Section 2. In Section 3, we establish the error
formulae for Ali's method and consider some asymptotic properties of the
propagation of round-off error, while Section 4 provides brief conclusions.

2. NOTATION AND FORMULAE

Consider fytg, an invertible and stationary ARMA series,

yt ÿ ö1 ytÿ1 ÿ � � � ÿ ö p ytÿ p � at ÿ è1atÿ1 ÿ � � � ÿ èqatÿq (2:1)

where at are independent random variables from N(0, ó 2) while ó , ö1, . . ., ö p

and è1, . . ., èq are parameters. To simplify notation, we will replace p and q by
r � max( p, q) with the understanding that some coef®cients öi or è j are zero.
Suppose now X � (x1, . . ., xN )T denotes the observation vector with error vector
ç � (ç1, . . ., çN )T; i.e. X � Y � ç, where we assume that these observational
errors fç tg are independent variables from the uniform distribution
U(ÿ0:5d, 0:5d) for some d . 0. Write the above equations for t � 1, 2, . . ., N
in the following partitioned form:

ÿör � � � � � � ÿö1 j 1 0 � � � 0

0 ÿör � � � ÿö2 j ÿö1 1 ..
.

0 0 . .
. ..

. j ..
. . .

. . .
.

0 0 0 ÿör j ÿörÿ1

0 0 0 0 j ÿör ÿö1 1

..

. ..
. ..

. ..
. j 0 . .

. . .
. . .

.
0

0 0 0 0 j � � � 0 ÿör � � � ÿö1 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA

3

y1ÿr

..

.

y0

y1

y2

..

.

yN

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
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�

ÿèr � � � � � � ÿè1 j 1 0 � � � 0

0 ÿèr � � � ÿè2 j ÿè1 1 ..
.

0 0 . .
. ..

. j ..
. . .

. . .
.

0 0 0 ÿèr j ÿèrÿ1

0 0 0 0 j ÿèr ÿè1 1

..

. ..
. ..

. ..
. j 0 . .

. . .
. . .

.
0

0 0 0 0 j � � � 0 ÿèr � � � ÿè1 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA

3

a1ÿr

..

.

a0

a1

a2

..

.

aN

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
which is used to de®ne the matrices in the corresponding equation:

Ö�
0

����Ö
 !

Y�
Y

� �
� È�

0

����È
 !

a�
a

� �
:

Then let

Z � ÖY � Èa� È�a� ÿÖ�Y�
0

� �
� Èa� d

0

� �
� Èa� D

where d is of length r and is uncorrelated with a. Considering the covariance
matrix of Z then gives the expression involving the covariance matrix Ã of Y ,
namely

ÖÃÖT � ÈÈTó 2 � ó 2 P 0

0 0

� �
where ó 2 P is the r 3 r covariance matrix of d which may be calculated directly
from the ARMA model parameters.

We denote the reduced likelihood by S � ó 2Y TÃÿ1Y and its actual
computed value, which is in¯uenced by both round-off errors and observational
errors, by Sr. Writing ÈÿT � (ÈT)ÿ1, by Ali's method we have
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S � Y TÖT ÈÈT � P 0

0 0

� �( )ÿ1

ÖY

� Y TÖT ÈÿTÈÿ1 ÿÈÿTÈÿ1
M 0

0 0

� �
ÈÿTÈÿ1

( )
ÖY (2:2)

where an expression for M is

M � ([ÈÿTÈÿ1]� Pÿ1)ÿ1

and [ÈÿTÈÿ1] is the ®rst r 3 r block of ÈÿTÈÿ1. This expression is derived
using a standard matrix inverse identity. It may also be derived from the
likelihood expressions which naturally provide an alternative form which is very
similar but much less prone to numerical error.

If both T and d were observed and hence both Z and d, the reduced
likelihood would be

S � aTa� dT Pÿ1d � [Èÿ1(Z ÿ D)]TÈÿ1(Z ÿ D)� dT Pÿ1d:

The required reduced likelihood is achieved by replacing d in S by its
minimizing value

d̂ � ([ÈÿTÈÿ1]� Pÿ1)ÿ1[ÈÿT]Èÿ1 Z

where [ÈÿT] is the matrix formed by the ®rst r rows of ÈÿT.
Substituting this value of d̂ in S, expanding and simplifying also leads to

(2.2). It may, however, be employed directly in the alternative form
S � âT â� d̂T Pÿ1 d̂ where âÈÿ1(Z ÿ D). Expression (2.2) is widely used and
we investigate the numerical errors in its computation. The alternative form is a
sum of positive quantities. We have seen in particular examples that the latter
form eliminates most of the numerical error obtained when using (2.2). Note
that Èÿ1u and ÈÿTu may be calculated by recurrence as follows. Let

b1

b2

..

.

bN

26664
37775 � Èÿ1

u1

u2

..

.

uN

26664
37775 and

c1

c2

..

.

cN

26664
37775 � ÈÿT

u1

u2

..

.

uN

26664
37775:

Then, we have
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b1 � u1

b2 � u2 � è1b1

..

.

b p�1 � u p�1 � è1b p � � � � � è pb1 (2:3)

b p�2 � u p�2 � è1b p�1 � � � � � è pb2

..

.

bN � uN � è1bNÿ1 � � � � � è pbNÿ p

and

cN � uN

cNÿ1 � uNÿ1 � è1cN (2:4)

..

.

c1 � u1 � è1c2 � � � � � è pc p�1:

Recall that

È� �
ÿèq

. � � � ÿè1

. ÿèq � � � ÿè2

� � � � � � � � � � � �
0 � � � � � � ÿèq

2664
3775 Ö� �

ÿö p
. � � � ÿö1

. ÿö p � � � ÿö2

� � � � � � � � � � � �
0 � � � � � � ÿö p

2664
3775

Y� �
y1ÿ p

..

.

y0

264
375 a� �

a1ÿq

..

.

a0

264
375 a �

a1

..

.

aN

264
375

Y 0 �
y1

y2 ÿ ö1 y1

..

.

yr ÿ ö1 yrÿ1 ÿ � � � ÿ ör y0

26664
37775 a0 �

ar�1è1ar ÿ � � � ÿ èqarÿqÿ1

..

.

aN ÿ è1aNÿ1 ÿ � � � ÿ èqaNÿq

264
375:

Then

ÖY � y0

a0

� �
(2:5)

and
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E(Y�a0T

) � 0: (2:6)

Let

~Z �

ÿö p � � � ÿö1 1 � � � � � � 0

0 ÿö p � � � ÿö1 1 � � � 0

0 � � � � � � � � � � � � � � � � � �
� � � � � � 0 ÿö p � � � ÿö1 1

26666664

37777775
Y�
Y

 !

� ÿÖ�Y�
0

 !
�ÖY : (2:7)

From (2.5), (2.6) and (2.7), we get

E(~Z ~ZT) � (ÖÃÖT � Ö�E(Y�Y 0T

) 0

0 0

" #

� E(Y�Y 0T

)Ö�T

0

0 0

" #
� Ö�ÃÖ�T

0

0 0

" #
(2:8)

with

Ã p �
ã0 ã1 � � � ã pÿ1

ã1 ã2 � � � � � �
� � � � � � � � � ã1

ã pÿ1 � � � ã1 ã0

2664
3775:

On the other hand, we can also write

~Z �

ÿèq � � � ÿè1 1 0 � � � 0

0 ÿèq � � � ÿè1 1 � � � 0

0 � � � � � � � � � � � � � � � � � �
� � � � � � 0 ÿèq � � � ÿè1 1

26666664

37777775
a�
a

� �

� È�a�
0

 !
�Èa

so that

E(~Z ~ZT) � ó 2ÈÈT È�È�T

0

0 0

� �
: (2:9)

Comparing (2.8) with (2.9), we get
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ÖÃÖT � ó 2 ÈÈT � P 0

0 0

� �� �
(2:10)

and

Ã � ó 2 Öÿ1ÈÈT � M 0

0 0

� �
ÖÿT

� �
so that

ó 2Ãÿ1 � ÖT ÈÿTÈÿ1 ÿÈÿTÈÿ1 M 0

0 0

� �
ÈÿTÈÿ1

� �
ÖÿT:

We now make the following standard assumptions regarding the round-off
error, during the numerical computations. Because the calculational and
observational errors are small, their products are neglected.

Assumption 1. The error in a product ab is abØ where jØ j, 2ÿ g and g is
a characteristic of the computer itself. Hence, the error in

Qk
i�1 ai isPkÿ1

j�1Ø j

Qk
i�1 ai.

Assumption 2. The error in a sum a� b is aØ1 � bØ2. Hence, the error inPk
i�1ai is

Pk
i�1aiØ i �

Pkÿ1
i�1 ai

Pkÿ1
j�1 î j, with î1 � 0 and jî jj, 2ÿ g.

From these assumptions, we have the following proposition.

Proposition 2.1. If the order of calculating b�Paici is `®rst computeP
aici and then add b', the accumulated calculated error in Öu is given by

f(Öÿ I)@(Ø1 �Ø2 � î1 L1)gu�Ø3@u. By the recurrence method, the error
in Öÿ1V is Èÿ1[f(I ÿÈ)@(Ø4 � î2 L2 �Ø5)gÈÿ1v�Ø6@v], where @
stands for the Hadamard product and

î �

0 � � � � � � � � � � � � 0

0 0 � � � � � � � � � 0

î3,1 0 0 � � � � � � 0

î4,2 î4,1 0 0 � � � 0

� � � � � � � � � � � � � � � � � �
0 îN , pÿ1 � � � îN ,1 0 0

26666664

37777775 L1 �
1 1 � � � 1

0 1 � � � 1

� � � � � � � � � � � �
0 � � � 0 1

2664
3775

with î2 and L2 having similar forms.

The proof of the following proposition is straightforward.

Proposition 2.2. Denote ö(z) � 1ÿ ö1z ÿ � � � ÿ ö pz p, è(z) � 1ÿ è1z
ÿ � � � ÿ èqzq. Let ui, vi be the coef®cients of ziÿ1 in the power series of
fè(z)gÿ1 or fö(z)gÿ1. Then
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Èÿ1 �
u1 0 � � � 0

u2 u1 0 � � �
� � � � � � � � � 0

uN � � � u2 u1

2664
3775 Öÿ1 �

v1 0 � � � 0

v2 v1 0 � � �
� � � � � � � � � 0

vN � � � v2 v1

2664
3775

and

ÈÿTÈÿ1 �

PN
1 u2

j

PNÿ1
1 u ju j�1 � � � uNPNÿ1

1 u2
j � � � uNÿ1

� � � � � �
u1

2664
3775

where uk � O(ëÿk), vk � O(ìÿk), 0 � u0 � uÿ1 � � � �, 0 � v0 � vÿ1 � � � �,
ë � minfjë1j, jë2j, . . ., jëqjg, ì � minfjì1, jì2j, . . ., jì pjg and fëig are the roots
of è(z), fìig are the roots of ö(z).

3. ALI'S METHOD

For Ali's method, it is easy to see that the observational errors do not in¯uence
M in (2.2) at all, because p, q are small while N is relatively large. We suppose
that M is independent of N and the calculational errors in M can be neglected.
From Proposition 2.2 we obtain the following theorem.

Theorem 3.1

Sr � V TV ÿ ZT M 0

0 0

� �
Z � å4

where

U � ÖX � å1 å1 � f(Öÿ I)@(Ø1 �Ø2 � î1 L1)gY �Ø3@Y

V � Èÿ1(U � å2) å2 � f(I ÿÈ)@(Ø4 �Ø5 � î2 L2)gÈÿ1U �Ø6@U

Z � èÿT(V � å3) å3 � Tf(Èÿ I)@(Ø7 �Ø8 � î3 L3)gÈÿ1V �Ø9@V

å4 �
XN

1

í2
i (Ø ai �Ø bi)�

XNÿ1

1

í2
i

XNÿ1

1

îaj �
Xr

i, j�1

mijziz j(Ø aij �Ø bij �Ø cij)

�
Xr

i�1

Xrÿ1

j�1

mijziz j

Xrÿ1

j

îbik �
Xr

1

îi

Xr

1

mijziz j �
Xrÿ1

i�1

Xr

j�1

mijziz j

Xrÿ1

i

îck

�Ø d

XN

1

í2
i �Ø e

Xr

i, j�1

mijziz j:
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We now consider an asymptotic property of these accumulated errors, in the
following.

Lemma 3.1

lim
1

N

XN

1

����ak

XNÿk�1

1

u jak� jÿ1

���� � E

����a1

X1
1

u ja j

���� � c0 (3:1)

lim
XN

1

jakÿi

PNÿk�1
1 u jak� jÿ1j

N
� Eja1jE

����a1

X1
1

u ja j

���� � c � 2
ó 2

ð

X1
1

u2
j

 !1=2

(3:2)

Proof. We prove only (3.1) since (3.2) is similar. Let

f N ,k �
XNÿk�1

1

u jak� jÿ1 f N �
X1

1

u jak� jÿ1:

Then

XN

1

j f Nk ak j ÿ c0

 !2

< 2
XN

1

jak j(j f Nk j ÿ j f k j)
( )2

� 2
XN

1

j f k ak j ÿ c0

 !2

XN

1

jak j(j f Nk j ÿ j f k j)
( )2

< 2
XNÿm

1

jak j(j f Nk j ÿ j f k j)
( )2

� 2
XN

Nÿm�1

jak j(j f Nk j ÿ j f k j)
( )2

where m is selected so that Efjak j(j f Nk j ÿ j f k j)g2 , E when k , N ÿ m. Since
Efjak j(j f Nk j ÿ j f k j)g2 , c1, when N is large enough,

1

N
E
XN

1

jak j(j f Nk j ÿ j f k j)
( )2

< 3E:

On the other hand,

E
XN

1

(jak f k j ÿ c0)

( )2
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� N E(ja1 f1j ÿ c0)2 � 2(N ÿ 1)Ef(ja1 f1j ÿ c0)(ja2 f2j ÿ c0)g � � � �
� 2Ef(ja1 f1j ÿ c0)(jaN f N j ÿ c0)g:

However,

Ef(ja1 f1j ÿ c0)(jak f k j ÿ c0) � E(ja1 f1ak f k j ÿ c2
0)

� E ja1j
����Xkÿ1

1

�
X1

k

u ja j

����
 !

jak f k j
( )

ÿ c2
0

� E

����a1

Xkÿ1

1

u ja j

����
 )

c0 ÿ c2
0 � o(1)

(

� o(1):

Hence, (3.1) is proved.

Analogously, we can obtain the next lemma.

Lemma 3.2

lim
1

N

XN

1

����ykÿi

XNÿk�1

1

u jak� jÿ1

���� � E ykÿi

X1
1

u ja j

���� � di (3:3)

where

di � d � ó ã0

X1
1

u2
j

 !1=2

i � 1, 2, . . . :

Since

Sr ÿ S � 2(Öç� å1 � å2)TÈÿTÈÿ1ÖY

ÿ 2fÈÿ1(Öç� å1 � å2)� å3gTÈÿ1
M 0

0 0

� �
ÈÿTÈÿ1ÖY

we can estimate the in¯uence of å1, å2 and å3. Let a � (a1, . . ., aN )T.

Theorem 3.2. If öi, è j are true parameters

çTÖTÈÿTÈÿ1ÖY

N
� o(1) (3:4)

1

N
jå1è

ÿTÈÿ1ÖY j < r d0 �
Xp

1

( pÿ t � 3)jö tjd
( )

� o(1) (3:5)
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1

N
jåT

2È
ÿTÈÿ1Öyj < r c0 �

Xq

1

(qÿ t � 4)jètjc
( )

� o(1) (3:6)

1

N
få3 �Èÿ1(å1 � å2 �Öç)gTÈÿ1 M 0

0 0

� �
ÈÿTÈÿ1ÖY

� �
� o(1): (3:7)

Proof. Consider

1

N
çTÖTÈÿTÈÿ1ÖY � 1

N
çTÖTÈÿTa� o(1)

� 1

N

XN

1

ö(B)uk

XNÿkÿ1

1

ç ja j�kÿ1 � o(1)

� o(1):

By Lemma 3.2, it is easy to see that

1

N
j[f(Öÿ I)@Ø1gY ]TÖÿTÖÿ1ÖY j < 1

N

Xp

1

rjö tj
XN

1

jykÿ t f Nk j � o(1)

� r
Xp

1

jö tjd � o(1)

1

N
j(Ø3@Y )TÈÿTÈÿ1ÖY j < 1

N
r
XN

1

jykÿ t f Nk j � o(1)

� rd0 � o(1)

and

1

N
j[fÖÿ I)@î1 L1gY ]TÈÿTÈÿ1ÖY j

<
1

N

Xp

1

r( pÿ t � 1)jö tj
XN

1

jykÿ t f Nk j � o(1)

� r
Xp

1

jö tj( pÿ t � 1)d t � o(1):

Hence, (3.5) holds. The proof of (3.6) is analogous. Let ái be the ith column of
Èÿ1, b � å3 �Èÿ1(å1 � å2 �Öç), h � Èÿ1ÖY � a� o(1). There exists c2

such that kbik, c2khik, c2 for all i. Hence,
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1

N

����bTÈÿ1
M 0

0 0

� �
ÈÿT h

���� � 1

N

��������X mij(b
Tai)(a

T
j h)

��������
� o(1):

Our results indicate that, because of the large number of computational steps
involved in computing the likelihood, the numerical errors accumulate and can
become huge, especially when the u j do not decrease. This can result in gross
errors in parameter estimation. Using double or triple precision (i.e. increasing
the g in Assumptions 1 and 2) would alleviate this numerical problem to some
extent. Our results also indicate that the observational errors sometimes play a
more important role and overwhelm the numerical errors. In practice, the errors
will counteract each other, so that the in¯uence of å1, å2 and å3 will become
smaller. On the other hand, if vTv,

P
mijziz j are large, the error in calculation

of M may be large. Hence, a large propagation of round-off error may be
produced, as the following example indicates.

Example 1. We consider ARMA(0, 15), i.e. yt � (1ÿ 0:5B)15at, and take
380 pseudo-random numbers from N(0, 1) as fatg to get Y with N � 365.
Although the exact value of S � 344:123, using Ali's method we obtainP

mijziz j � 0:523944 3 1012 and Sr � 0:358259 3 1010, whereas Sr � 0:5768
3 103 by the innovation algorithm. When using triple precision, these two
methods yield 5000 and 350 respectively. Convergence does not occur at all by
the Box±Jenkins method. The problem here is that the u j are large and do not
decrease with j.

When d2=2ÿ g is large, çTÖTÈÿTÈÿ1 Fç cannot be neglected. By a lengthy
deduction analogous to arguments in Lemma 3.1, we can establish the
following theorem.

Theorem 3.3

lim
1

N
çTÖTÈÿTÈTÈç � 1

12
ä2
X1

1

fÖ(B)u jg2:

When the çi are not independent, (3.4) does not hold and their in¯uence is
large because of the following theorem.

Theorem 3.4. When qi, f j are true parameters,

1

N
jçTÖTÈÿTÈÿ1ÈY j < 1

2
äó

X1
1

fÖ(B)u jg2

" #1=2

� o(1):
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4. CONCLUSIONS

1. When ã0 or
P

u2
j is very large, as for example when one of the roots of

ö(z)è(z) is near the unit circle, round-off errors play an important role when
computing the ML estimator.

2. Ali's method is convenient for theoretical deductions, but from the
viewpoint of error analysis it is an ill-conditioned method. Because lim ín � 1,
the innovations method is not an ill-conditioned algorithm.

3. When the round-off errors are considered as random variables (see Faye
and Vignes, 1985), the variance of the ML estimator can be highly in¯ated.

4. If ä2=2ÿ g is large or if the observational errors are not independent, their
in¯uence could become larger than the in¯uence of the round-off error.
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